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Modeling Step Index Fiber to Soliton Propagation
Tomasz Kaczmarek

Abstract—Step index fiber modeling process is carried out
through numerical solving of eigenvalue equation to calculate
propagation constant for fundamental mod. Input data in the
process is only index of refraction calculated from Sellmeier
dispersive formula for appropriate mol percentage doping of
germanium dioxide in silica glass fiber. Output data in the
modeling process is optimal value of the normalized frequency,
which guarantees that single mode operation region is equal to
bright soliton propagation region. Final verification of the process
is soliton generation up to sixth-order inside such modeled fiber.
In this end nonlinear Schödinger equation is solved numerically
for initial condition of hyperbolic secant form. Maximization of
single mode operation and bright soliton propagation region is
essential in wavelength division multiplexing technique.

Index Terms—eigenvalue equation, nonlinear Schödinger equa-
tion, solitons

I. INTRODUCTION

T
HE word soliton refers to special kinds of wave packets

that can propagate undistorted over long distances. In the

context of optical fibers solitons have found practical appli-

cations in the field of fiber-optic communications. Solitons

results from a balance between group-velocity dispersion and

self-phase modulation, both of which can be calculated in

effect of step index fiber modeling process.

Propagation of soliton in single-mode optical fiber is de-

scribed by the nonlinear Schrödinger equation [1]–[4]

j
∂A

∂z
− β2

2

∂2A

∂T 2
+ γ |A|2 A = 0, (1)

where A is the slowly varying envelope of the pulse, γ
is nonlinear parameter of the fiber, β2 is group velocity

dispersion, z and T are spatial and time variable, respectively.

Group velocity dispersion expressed in ps2/km is defined as

the second derivative of mode propagation constant β with

respect to frequency ω i.e. β2 = d2β/dω2, and is related to

dispersion parameter D expressed in ps/(km · nm) through

the relation D = −2πcβ2/λ
2 where c is the speed of light in

vacuum. Nonlinear parameter is defined as follows [1], [4]

γ =
nNLk

Aeff
, (2)

where nNL is nonlinear refractive index, Aeff is known as

effective core area. For pulses as short as 1 ps and in case of

single mode fiber, which core is made of silica glass doped

by germanium dioxide, value of nNL is approximately equal

to nNL = 2.2 ·10−20m2/W [1]. Effective core area is related

to the transverse component of electric field vector E0 and
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effective core radius ωeff through the relations [1], [4]

Aeff =

2π
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= πω2

eff , (3)

where r is radial coordinate in the cylindrical coordinate

system. Absolute value of E0 is related to the transverse

components of electric field vector Er and Eφ through well

known formula |E0| = (|Er |2 + |Eφ|2)1/2. The transverse

components are determined by the use of axial component

of electric Ez and magnetic Hz field vectors through the

following relations [3], [5], [6]
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for the core. In case of cladding subscript 1 should be changed

to 2 and, moreover, variable χ2 should be replaced with –

σ2. Equations from (4) to (7) are essential for computing an

average power curried by the core [5], [6]

P1 = π
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)
rdr, (8)

and cladding [5], [6]

P2 = π
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a
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Er2H

∗
φ2 − Eφ2H

∗
r2

)
rdr, (9)

where for example H∗
φ1 means complex conjugate to Hφ1.

Average power propagated inside the core P1 can be expressed

as percentage through the relation P1% = [P1/(P1 + P2)] ·
100%. The expressions for Ez and Hz are given by [3], [5],

[6]

Ez1 = AEJm (χr) exp [j (mφ+ ωt− βz)] , (10)

Hz1 = AHJm (χr) exp [j (mφ+ ωt− βz)] , (11)

for the core and [3], [5], [6]

Ez2 = BEKm (σr) exp [j (mφ+ ωt− βz)] , (12)

Hz2 = BHKm (σr) exp [j (mφ+ ωt− βz)] , (13)

for the cladding of the step index fiber, where AE , AH , BE

and BH are arbitrary constants, Jm(χr) is the Bessel function
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of the first kind of orderm andKm(σr) is the modified Bessel

function of the second kind of order m. The constant m must

be an integer since the fields must be periodic in φ with a

period of 2π. Inside the core factor χ2 is given by [3], [5], [6]

χ2 = k2n2
1 − β2, (14)

while outside the core

σ2 = β2 − k2n2
2. (15)

Time coordinate T from equation (1), which describes pulse

evolution inside a single-mode fiber, is related to t from

equations (9), (10), (11) and (12) in the following way [1],

[4]

T = t− z/vg = t− β1z, (16)

where vg is the group velocity at which the frame of reference

is moving with the pulse, β1 is the first derivative of β with

respect to ω and is related to group velocity dispersion through

well known relation β2 = dβ1/dω.
The solution for β from permissible range for guided modes

kn2 ≤ β ≤ kn1, (17)

must be determined from the boundary conditions, which

require that the tangential components Eφ and Ez of electric

field vector ~E inside and outside of the dielectric interface

at r = a must be the same and similarly for the tangential

components Hφ and Hz of magnetic field vector ~H . By

requiring the continuity of Ez ,Hz , Eφ, and Hφ at r = a,
one can obtain a set of four homogeneous equations satisfied

by AE , AH , BE and BH . These equations have a nontrivial

solution only if the determinant of the coefficient matrix

vanishes. After considerable algebraic details, this condition

leads to the following eigenvalue equation for β(EV(β) = 0)
[5], [6]:
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II. METHOD

Step index fiber modeling in order to soliton propagation

can be divided into two stages. In the fist stage the optimal

value of the normalized frequency Vopt is calculated. In this

end, eigenvalue equation (18) for step index fiber is solved

numerically. The optimal value of the normalized frequency

guarantees that the cut off wavelength λC for TE01 mode is

equal to the zero dispersion wavelength λZD , furthermore, if

λC = λZD then also∆λC = ∆λZD , where∆λC = λopt−λC

and similarly ∆λZD = λopt − λZD (λopt = 1.55µm is

optimal operating wavelength). In this special case, single

mode condition λoper > λC is in full agreement with bright

soliton propagation condition λoper > λZD , where λoper

is operating wavelength. If V > Vopt then λC > λZD

which means that ∆λC < ∆λZD and simultaneous fulfillment

of single mode and bright soliton propagation condition is

only possible for λoper > λC . Similarly if V < Vopt, then

λZD > λC (∆λZD < ∆λC) and simultaneous fulfillment of

TABLE I
SELLMEIER COEFFICIENTS VALUES FOR APPROPRIATE GERMANIUM

DIOXIDE MOL % DOPING OF SILICA GLASS AND FOR PURE SILICA GLASS

[6], [7]

100m%
SiO2

3.1m%
GeO2

5.8m%
GeO2

7.9m%
GeO2

13.5m%
GeO2

a1 0.69616 0.70285 0.70888 0.71368 0.71104

a2 0.40794 0.41463 0.42068 0.42548 0.45188

a3 0.89749 0.89745 0.89565 0.89642 0.70404

λ1 [µm] 0.06840 0.07277 0.06090 0.06171 0.06427

λ2 [µm] 0.11624 0.11430 0.12545 0.12708 0.12940

λ3 [µm] 9.89616 9.89616 9.89616 9.89616 9.42547

TABLE II
FOUR CASES OF CORE AND CLADDING CHEMICAL COMPOSITION OF STEP

INDEX FIBER

Case Core Cladding

1 3.1mol% GeO2 & 96.9mol% SiO2 100mol% SiO2

2 5.8mol% GeO2 & 94.2mol% SiO2 100mol% SiO2

3 7.9mol% GeO2 & 92.1mol% SiO2 100mol% SiO2

4 13.5mol% GeO2 & 86.5mol% SiO2 100mol% SiO2

single mode working regime and pulse like soliton propagation

condition is possible if and only if λoper > λZD (TABLE III).

If one starts from value 2.4 for normalized frequency and

tries to calculate the optmal value of core radius of the fiber

which cladding is made of pure SiO2 and its core is doped by

different mol % GeO2, one has to use the following relation

[3], [5], [6]

a = V/

(
k(λ)

√
n2
1(λ)− n2

2(λ)

)
, (19)

where V = 2.4 is the normalized frequency, k = 2π/λ is

the wave number, n1 and n2 are refractive indices of the

core and cladding, respectively. The values of both indices

are determined through Sellmeier dispersive formula [3], [6],

[7]

n =

√√√√1 +

3∑

i=1

aiλ2

λ2 − λ2
i

, (20)

where ai is the oscillator strength, λi is the oscillator res-

onance wavelength. Both coefficients values for appropriate

GeO2 mol % doping of SiO2 are presented in TABLE I.

By the assumption that the cladding is made of pure silica

glass there are four cases in the modeling of step index fiber

for four types of germanium dioxide doping, which can be

numbered in increasing GeO2 doping order (TABLE II).

After suitable rearranging of equation (19) to the following

form λ = 2πa
(
n2
1(λ) − n2

2(λ)
)1/2

/V , it is possible to calcu-

late cut off wavelength λC for the TE01 mode. Obtaining of

zero dispersion wavelength λZD can be done in two ways. By

the use of group velocity dispersion β2 = f(λ) or dispersion

parameter D = f(λ) characteristic. In each case the result

should be the same.

In the second stage, nonlinear Schrödinger equation is

solved numerically by the use of split-step Fourier (SSF)

method, for each case of the optimized step index fiber
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TABLE III
INTERMIDIET AND FINAL RESULTS OF THE FIRST STAGE MODELING

PROCESS

Normalized
Frequency

Case 1
λ[µm]

Case 2
λ[µm]

Case 3
λ[µm]

Case 4
λ[µm]

V = 2.4 λC=1.547
λZD=1.287

λC=1.547
λZD=1.295

λC=1.547
λZD=1.310

λC=1.547
λZD=1.380

V =2.3 λC=1.483
λZD=1.291

λC=1.483
λZD=1.303

λC=1.483
λZD=1.323

λC=1.480
λZD=1.408

Vopt=2.231 λC=λZD=
=1.434

V =2.2 λC=1.420
λZD=1.296

λC=1.419
λZD=1.314

λC=1.419
λZD=1.340

λC=1.414
λZD=1.448

Vopt=2.107 λC=λZD=
=1.360

V =2.1 λC=1.356
λZD=1.302

λC=1.354
λZD=1.327

λC=1.355
λZD=1.362

Vopt=2.065 λC=λZD=
=1.333

Vopt=2.024 λC=λZD=
=1.308

V =2.0 λC=1.292
λZD=1.310

λC=1.291
λZD=1.345

in the first stage, for soliton pulses up to the sixth order.

Split-step Fourier is a pseudospectral method, which has

been extensively used to solve the pulse-propagation problem

in nonlinear dispersive media. In this method approximate

solution is obtained by the assumption that in propagating

the optical field over a small distance h, the dispersive and

nonlinear effects act independently. It can be understood if

Eq. (1) is rewritten in the following form [1], [4]

∂A

∂z
= (D+N)A, (21)

where D = −(jβ2/2)(∂
2/∂T 2) is a differential operator that

accounts for dispersion in a linear medium and N = jγ|A|2 is

a nonlinear operator that governs the effect of fiber nonlinear-

ities on pulse propagation. So in case of SSF method optical

field propagation from zto z+h is carried out in two steps. In

the first step D = 0 in Eq. (21) and nonlinearity acts alone, in

the second step N = 0 in Eq. (21) and dispersion acts alone.

Mathematically it can be prescribed as follows [1], [4]

A(z+h, T )≈F−1{exp [hD(jω)]F [exp(hN)A(z, T )]} , (22)

where F denotes the Fourier-transform operation, D(jω) =
jω2β2/2 is obtained from a differential operator by replacing

∂/∂T with jω, where ω is the frequency in the Fourier

domain.

III. RESULTS

Searching the optimal value of the normalized frequency

Vopt was started from V = 2.4 and closed for V = 2.0 (V ∈
{2.4, 2.3, 2.2, 2.1, 2.0}). Intermediate (λC 6= λZD) and final

(λC = λZD) results are presented in TABLE III.

Summarized results for the first stage of step index fiber

modeling process for λopt = 1.55 µm and for HE11 mode

are presented in TABLE IV.

In order to solve Eq. (1) numerically for initial condition

of the form [1]–[4] A(z = 0, T ) = A0 sech(T/T0), it is

TABLE IV
SUMMARIZED RESULTS FOR THE FIRST STAGE OF STEP INDEX FIBER

MODELING PROCESS

Parameter Case 1 Case 2 Case 3 Case 4

Vopt 2.024 2.065 2.107 2.231

a [µm] 4.293 3.178 2.762 2.200

P1% [%] 60.96 62.74 64.49 67.26

ωeff [µm] 5.228 3.815 3.270 2.510

Aeff [µm2] 86.86 45.73 33.60 19.79

γ [1/Wkm] 1.039 1.950 2.654 4.507

λC = λZD [µm] 1.308 1.333 1.360 1.434

∆λC = ∆λZD = [nm] 242.3 217.2 189.9 115.8

D [ps/km nm] 16.86 13.34 10.61 5.693

β2 [ps2/km] -21.51 -17.02 -13.53 -7.263

TABLE V
FOUR PARAMETERS VALUE CALCULATED FOR FOUR CASES OF STEP

INDEX FIBER FOR FUNDAMENTAL SOLITON INITIAL WIDTH T0 = 1 ps.

Parameter Case 1 Case 2 Case 3 Case 4

P0 [W ] 20.71 8.725 5.098 1.612

A0 4.551 2.954 2.258 1.269

LD [m] 46.49 58.77 73.89 137.7

z0 [m] 73.03 92.32 116.1 216.3

necessary to calculate peak amplitude value A0 (which is

proportional to peak power P0) for appropriate soliton order

N from the following relation [1]–[4] N2 = γP0LD, where

LD = T 2
0 /|β2| is the dispersion length and T0 is the measure

of the impulse width. For fundamental (N = 1) and higher

order solitons (N = 2, 3, 4, . . .), it is possible to calculate

soliton period z0 from the dispersion length value LD obtained

earlier because [1]–[4] z0 = (π/2)LD.

Only fundamental soliton (N = 1) can be used as infor-

mation bits in soliton-based communication systems and only

when individual solitons are well isolated (RZ format). The

last requirement can be used to relate the soliton width T0 to

the bit rate B as follows [2]–[4] B = 1/TB = 1/(2q0TB),
where TB is the duration of the bit slot and 2q0 = TB/T0

is the separation between neighboring solitons in normalized

units. For T0 = 1 ps and q0 = 5, bit rate B in soliton based

communication system is equal to B = 100 Gbit/s. Table V

shows calculation results for four necessary parameters needed

to solve numerically Eq. (1), for initial width T0 = 1 ps and

for fundamental soliton (N = 1).

IV. DISCUSSION

Fig. 1 shows lack of the shape variation of the pulse as a

function of the propagation distance (one soliton period which

is equal to z0 = 216.3 m) for the fundamental soliton in case

of number 4. It means that first-order soliton (N = 1) can be

generated for peak amplitude value A0 = 1.269 (column 5 of

TABLE V).

V. CONCLUSIONS

On the basis of the performed calculations it has been found

that if mol % doping of germanium dioxide is increasing inside
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Fig. 1. Evolution of the first-order soliton (N = 1) over one soliton period.

the core, then the optimal value of the normalized frequency

Vopt of the modeled step index fiber is also increasing. Increase

of Vopt implies increase of zero dispersion wavelength λZD

and cut off wavelength λC , which are equal in case of

normalized frequency optimization. Additionally, growth of

Vopt value is responsible for rise of the average power curried

by the core P1. There is only one more parameter which

value is increasing when mol % doping of germanium dioxide

is increasing. It is nonlinear parameter γ, which in turn is

responsible for decreasing the peak power needed to generate

fundamental soliton in each case of step index fiber modeling

process. Furthermore, decrease of dispersion parameter D
and absolute value of group velocity dispersion parameter

β2 is responsible for increase of dispersion length LD and

value of the soliton period z0. Fundamental disadvantage

of increasing λZD and λC is decreasing of bright soliton

generation region ∆λZD and single mode operation region

∆λC , which are essential in wavelength division multiplexing

technique application.
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