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Retry Loss Models Supporting Elastic Traffic
Ioannis D. Moscholios, Vassilios G. Vasilakis, John S. Vardakas and Michael D. Logothetis

Abstract—We consider a single-link loss system of fixed capac-
ity, which accommodates K service-classes of Poisson traffic with
elastic bandwidth-per-call requirements. When a new call cannot
be accepted in the system with its peak-bandwidth requirement,
it can retry one or more times (single and multi-retry loss
model, respectively) to be connected in the system with reduced
bandwidth requirement and increased service time, exponentially
distributed. Furthermore, if its last bandwidth requirement is still
higher than the available link bandwidth, it can be accepted in
the system by compressing not only the bandwidth of all in-
service calls (of all service-classes) but also its last bandwidth
requirement. The proposed model does not have a product form
solution and therefore we propose an approximate recursive
formula for the calculation of the link occupancy distribution
and consequently call blocking probabilities. The accuracy of
the proposed formula is verified by simulation and is found to
be quite satisfactory.

Index Terms—Markov chain, call blocking, recursive formula,
retry, elastic services

I. INTRODUCTION

M
ULTI-RATE loss models are extensively used in the

literature for the call-level QoS assessment of modern

telecom networks. This assessment is critical not only for

the bandwidth allocation among calls of different service-

classes but also for the avoidance of over-dimensioning of

a network. Despite of its importance, the call-level QoS

assessment remains an open issue, due to the existence of

elastic traffic in modern telecom networks. By the term “elastic

traffic” we mean calls whose assigned bandwidth can be

compressed or expanded during their lifetime in the system.

Modeling elastic traffic at call-level can be based on the

classical Erlang Multirate Loss Model (EMLM) ([1], [2]])

which has been widely used in wired (e.g. [3], [4], [5], [6]),

wireless (e.g. [7], [8], [9], [10]) and optical networks (e.g. [11],

[12], [13], [14], [15]) to model systems that accommodate calls

of different service-classes with different traffic and bandwidth

requirements.

In the EMLM, calls of different service-classes arrive at a

link of capacity C, following a Poisson process, and compete

for the available link bandwidth under the complete sharing

policy (all calls compete for all bandwidth resources). If upon

arrival a call’s bandwidth requirement is not available, the call
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is blocked and lost. Otherwise, it remains in the system for

a generally distributed service time [1]. The analysis of the

EMLM shows that the steady state distribution of in-service

calls has a product form solution (PFS) [16]. Exploiting

this fact, an accurate recursive formula (known as Kaufman-

Roberts formula, KR formula) has been separately proposed

by Kaufman [1] and Roberts [2] which determines the link

occupancy distribution and simplifies the determination of

call blocking probabilities (CBP). In [17], [18], the EMLM

is extended to the retry models, in which blocked calls can

immediately reattempt (one or more times – single-retry loss

model (SRM) and multi-retry loss model (MRM), respec-

tively) to be connected by requiring less bandwidth units (b.u.),

while increasing their service time which is exponentially

distributed, so that the product (service time) by (bandwidth

per call) remains constant. A retry call is blocked and lost from

the system when its last bandwidth requirement is higher than

the available link bandwidth.

In this paper, we extend the models of [17], [18], by

incorporating elastic traffic. We name the proposed single-retry

loss model, Extended SRM (E-SRM) and the multi-retry loss

model, Extended MRM (E-MRM). In the proposed models,

when a retry call attempts to be connected in the system and

its last bandwidth requirement is higher than the available link

bandwidth, the system accepts this call (contrary to [17], [18],

where this call is lost) by compressing not only the bandwidth

of all in-service calls (of all service-classes) but also the last

bandwidth requirement of the retry call. The corresponding

service times are increased so that the product (service time)

by (bandwidth per call) remains constant. On the other hand

when an in-service call, whose bandwidth is compressed,

departs from the system then the remaining in-service calls

(of all service-classes) expand their bandwidth. A retry call

is blocked and lost from the system when the compressed

bandwidth should be less than a minimum proportion (rmin)
of its required last-bandwidth. Note that rmin is common

for all service-classes. The compression/expansion mechanism

together with the existence of retrials destroys reversibility in

the proposed models and therefore no PFS exists. However,

we propose approximate recursive formula for the calculation

of the link occupancy distribution that simplifies the CBP

determination. Simulation results validate the accuracy of the

proposed formulas. In the case of no retrials for calls of all

service-classes, the proposed models coincide with the model

of [19] which has incorporated elastic traffic in the EMLM.

We name this model, Extended EMLM (E-EMLM).

The remainder of this paper is as follows: In Section II

we review the SRM, MRM and E-EMLM. In Section III,

we present the proposed E-SRM and E-MRM and provide

formulas for the approximate calculation of the link occupancy

distribution and CBP. In Section IV, we present numerical and
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simulation results in order to validate the models’ accuracy.

We conclude in Section V.

II. REVIEW OF THE RETRY LOSS MODELS AND THE

E-EMLM

A. Review of the single and multi-retry loss models

Consider a link of capacity C b.u. that accommodates calls

of K service-classes. Let j be the occupied link bandwidth,

j = 0, 1, . . ., C. Calls of each service-class k (k = 1, . . .,K)

arrive in the link according to a Poisson process with rate λk

and request bk b.u. If bk b.u. are available, a call of service-

class k remains in the system for an exponentially distributed

service-time with mean µ−1
k . Otherwise, the call is blocked and

retries immediately to be connected in the system with “retry

parameters” (bkr, µ
−1
kr ) where bkr < bk and µ−1

kr > µ−1
k . The

SRM does not have a PFS and therefore the calculation of the

link occupancy distribution, G(j), is based on an approximate

recursive formula, [17], [18]:

G(j)=





1 for j=0

1
j

K∑
k=1

αkbkG(j−bk)+

+ 1
j

K∑
k=1

αkrbkrγkr(j)G(j−bkr)
for j=1, . . . , C

0 otherwise

,

(1)

where αk = λkµ
−1
k , αkr = λkµ

−1
kr , γkr(j) = 1 when j >

C−(bk − bkr), otherwise γkr(j) = 0.
Equation (1) is based on two assumptions: 1) the application

of Local Balance (LB), which exists only in PFS models and

2) the application of Migration Approximation (MA) which

assumes that the occupied link bandwidth from retry calls is

negligible when the link occupancy is below or equal to the

retry boundary, i.e. when j ≤ C − (bk − bkr). The existence

of the MA in eq. (1) is expressed by the variable γkr(j).
The final CBP of a service-class k, denoted as Bkr, is the

probability of a call to be blocked with its retry bandwidth

requirement and is given by:

Bkr =

C∑

j=C−bkr+1

G−1G(j), (2)

where G =
∑C

j=0 G(j) is the normalization constant and

bkr > 0.
In the MRM, a blocked call of service-class kcan have

multiple retrials with “retry parameters” (bkrl , µ
−1
krl

) for l =

1, . . . , s(k), where bkrs(k)
< . . . < bkr1 < bk and µ−1

krs(k)
>

. . . > µ−1
kr1

> µ−1
k . The MRM does not have a PFS and

therefore the calculation of the link occupancy distribution,

G(j), is based on an approximate recursive formula [18]:

G(j)=





1 for j = 0

1
j

K∑
k=1

akbkG(j−bk)+

+ 1
j

K∑
k=1

s(k)∑
l=1

akrlbkrlγkrl
(j)G(j−bkrl)

for j = 1, . . . , C

0 otherwise

,

(3)

where: akrl = λkµ
−1
krl

, γkrl(j) = 1, if C ≥ j > C− (bkrl−1
−

bkrl), otherwise γkrl(j) = 0.

The final CBP of a service-class k, denoted as Bkrs(k)
, is the

probability of a call to be blocked with its last retry bandwidth

requirement and is given by:

Bkrs(k)
=

C∑

j=C−bkrs(k)
+1

G−1G(j), (4)

where G =
∑C

j=0 G(j) and bkrl > 0 for l = 1, . . ., s(k).

B. Review of the E-EMLM

Consider again a link of capacity C b.u. that accommodates

Poisson arriving calls of K service-classes. A call of service-

class k (k = 1, . . .,K) arrives in the system with rate λk and

requests bk b.u. (peak-bandwidth requirement). If j+ bk ≤ C,

the call is accepted in the system with its peak-bandwidth

requirement and remains in the system for an exponentially

distributed service time with mean µ−1
k . If T ≥ j + bk > C

the call is accepted in the system by compressing not only its

bandwidth requirement but also the bandwidth of all in-service

calls. The compressed bandwidth of the new service-class k
call is:

b′k = rbk =
C

j′
bk, (5)

where r ≡ r(nnn) = C/j′, j′ = j + bk = nbnbnb + bk and T
is the limit (in b.u.) up to which bandwidth compression is

permitted.

Similarly, the bandwidth of all in-service calls will be

compressed and become equal to b′i =
C
j′ bi for i = 1, . . .,K .

After the compression of both the new call and the in-service

calls the state of the system is j = C. The minimum bandwidth

that a call of service-class k (either new or in-service) can

tolerate is given by the expression:

b′k,min = rminbk =
C

T
bk, (6)

where rmin = C/T is the minimum proportion of the required

peak-bandwidth and is common for all service-classes.

This means that if upon arrival of a service-class k call, with

peak-bandwidth requirement bk b.u., we have j = j+ bk > T
(or equivalently, j′ > T or C/j′ < rmin) then the call is

blocked and lost without further affecting the system.

After the bandwidth compression, calls increase their ser-

vice time so that the product (service time) by (bandwidth per

call) remains constant. Thus, due to bandwidth compression

calls of service-class k may remain in the system more than

µ−1
k time units. Increasing the value of T , decreases rmin and

increases the delay of calls of service-class k (compared to

the initial service time µ−1
k ). Therefore the value of T can be

chosen so that this delay remains within acceptable levels.

The compression/expansion of bandwidth destroys re-

versibility in the E-EMLM and therefore no PFS exists.

However, in [19] an approximate recursive formula is proposed
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which determines G(j)’s:

G(j) =





1 for j = 0

1
min(j,C)

K∑
k=1

akbkG(j − bk) for j = 1, · · · , T
0 otherwise

,

(7)

where αk = λkµ
−1
k .

Equation (7) is based on a reversible Markov chain which

approximates the bandwidth compression/expansion mecha-

nism of the E-EMLM, described above. The LB equations

of this Markov chain are of the form [19]:

λkP (nnn−
k ) = nkµkφk(nnn)P (nnn), (8)

where P (nnn) is the probability distribution of state nnn =
n1, n2, . . ., nk, . . ., nK), P (nnn−

k ) is the probability distribution

of state nnn−
k = (n1, n2, . . . , nk−1, nk − 1, nk+1, . . . , nK) and

φk(nnn) is a state dependent factor which describes: i) the

compression factor of bandwidth and ii) the increase factor

of service time of service-class k calls in state nnn, so that

(service time) by (bandwidth per call) remains constant. In

other words, φk(nnn) has the same role with r(nnn) in eq. (5) or

rmin in eq. (6) but it may be different for each service-class.

It is apparent now why the model of eq. (7) approximates the

E-EMLM. The values of φk(nnn) are given by:

φk(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ
x(nnn−

k )

x(nnn) , for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

, (9)

where ΩΩΩ = {nnn : 0 ≤ nbnbnb ≤ T and nbnbnb =
∑K

k=1 nkbk.
In eq. (9), x(nnn) is a state multiplier, associated with state

nnn, whose values, are chosen so that eq. (8) holds, [19]:

x(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ

1
C

K∑
k=1

nkbkx(nnn
−
k ) , for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

.

(10)

Having determined the values of G(j)’s we can calculate CBP

according to the following formula:

Bk =

T∑

j=T−bk+1

G−1G(j), (11)

where G =
∑T

j=0 G(j) is the normalization constant.

III. RETRY LOSS MODELS SUPPORTING ELASTIC TRAFFIC

A. The extended single-retry loss model

The proposed E-SRM is a non-PFS model that combines

the characteristics of the SRM and the E-EMLM. In order

to provide an approximate but recursive formula for the

calculation of the link occupancy distribution we present the

following simple example.

Consider a link of capacity C b.u. that accommodates

Poisson arriving calls of two service-classes with traf-

fic parameters: (λ1, µ
−1
1 , b1) f or the 1st service-class and

(λ2, µ
−1
2 , µ−1

2r , b2, b2r) for the 2nd service-class. Calls of the

2nd service-class have “retry parameters” with b2r < b2 and

µ−1
2r > µ−1

2 . Let T be the limit up to which bandwidth

compression is permitted for calls of both service-classes

Although the E-SRM is a non-PFS model we will use the

LB eq. (8), initially for calls of the 1st service-class:

λ1P (nnn−
1 ) = n1µ1φ1(nnn)P (nnn), (12)

for 1 ≤ nbnbnb ≤ T , where nnn = (n1, n2, n2r), nnn
−
1 = (n1 −

1, n2, n2r) with n1 ≥ 1 and

φ1(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ
x(nnn−

1 )
x(nnn) , for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

(13)

with nbnbnb = j =
∑2

k=1(nkbk+nkrbkr) = n1b1+n2b2+n2rb2r.

Based on eq. (13) and multiplying both sides of eq. (12)

with b1 we have:

a1b1x(nnn)P (nnn−
1 ) = n1b1x(nnn

−
1 )P (nnn), (14)

where α1 = λ1µ
−1
1 and the values of x(nnn) are given by:

x(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ

1
C

K∑
k=1

nkbkx(nnn
−
k )+

+nkrbkrx(nnn
−
kr)

, for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

.

(15)

To derive the corresponding LB equations of 2nd service-

class calls consider that a call of the 2nd service-class arrives

in the system when the occupied link bandwidth is j b.u. with

j = 0, 1, . . ., T . If j ≤ C − b2, the call will be accepted

in the system with b2 b.u. If j > C − b2, the call will be

blocked with its b2 requirement and will immediately try to

be connected in the system with b2r < b2. We consider three

cases: 1) If j + b2r ≤ C the retry call will be accepted in

the system with b2r. 2) If j + b2r > T the retry call will be

blocked and lost. 3) If C < j + b2r ≤ T the retry call will be

accepted in the system by compressing not only its bandwidth

requirement b2r but also the bandwidth of all in-service calls.

The compressed bandwidth of the retry call is b′2r = rb′2r =
C
j′ b

′
2r where r = C/j, j′ = j + b2r = nbnbnb + b2r. Similarly,

the bandwidth of all in-service calls will be compressed (by

the same factor) and become b′i =
C
j′ bi for i = 1, 2. After the

compression of both the new call and the in-service calls the

state of the system is j = C. The minimum bandwidth that

a call of the 2nd service-class (either new or in-service) can

tolerate is: b′2r,min = rminb2r =
C
T b2r.

Based on the previous discussion we consider the following

LB equations for calls of the 2nd service-class:

a) λ2P (n−
2 ) = n2µ2φ2(n)P (n), (16)

for 1 ≤ nbnbnb ≤ C, where nnn = (n1, n2, n2r), nnn
−
2 = (n1, n2 −

1, n2r) with n2 ≥ 1 and

φ2(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ
x(nnn−

2 )
x(nnn) , for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

. (17)
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Based on eq. (17) and multiplying both sides of eq. (16)

with b2 we have:

a2b2x(nnn)P (nnn−
2 ) = n2b2x(nnn

−
2 )P (nnn), (18)

for 1 ≤ nbnbnb ≤ C, where α2 = λ2µ
−1
2 and the values of x(nnn)

are given by eq. (15).

b) λ2P (nnn−
2r) = n2rµ2rφ2r(nnn)P (nnn), (19)

for C − b2 + b2r < nbnbnb ≤ T , whereP (nnn−
2r) is the probability

distribution of state nnn−
2r = (n1, n2, n2r − 1) and

φ2r(nnn) =





1 , for nbnbnb ≤ C, nnn ∈ ΩΩΩ
x(nnn−

2r)
x(nnn) , for C < nbnbnb ≤ T , nnn ∈ ΩΩΩ

0 , otherwise

. (20)

Based on eq. (20) and multiplying both sides of eq. (19)

with b2r we have:

a2rb2rx(nnn)P (nnn−
2r) = n2rb2rx(nnn

−
2r)P (nnn), (21)

for C − b2 + b2r < nbnbnb ≤ T , where α2r = λ2rµ
−1
2r and the

values of x(nnn) are given by eq. (15).

Equations (14), (18) and (21) lead to the following system

of equations:

a1b1x(nnn)P (nnn−
1 ) + a2b2x(nnn)P (nnn−

2 ) =

(n1b1x(nnn
−
1 ) + n2b2x(nnn

−
2 ))P (nnn), (22)

for 1≤ nb ≤ C − b2 + b2r,

a1b1x(nnn)P (nnn−
1 )+a2b2x(nnn)P (nnn−

2 )+a2rb2rx(nnn)P (nnn−
2r)=

(n1b1x(nnn
−
1 )+n2b2x(nnn

−
2 )+n2rb2rx(nnn

−
2r))P (nnn), (23)

for C − b2 + b2r < nbnbnb ≤ C,

a1b1x(nnn)P (nnn−
1 ) + a2rb2rx(nnn)P (nnn−

2r) =

(n1b1x(nnn
−
1 ) + n2rb2rx(nnn

−
2r))P (nnn) (24)

or C < nbnbnb ≤ T .
Equations (22)-(24) can be combined into one equation by

assuming that calls with b2r are negligible when 1 ≤ nbnbnb ≤
C − b2 + b2r (MA) and calls with b2 are negligible when

C < nbnbnb ≤ T :

a1b1x(nnn)P (nnn−
1 ) + a2b2γ2(nbnbnb)x(nnn)P (nnn−

2 )+

+a2rb2rγ2r(nbnbnb)x(nnn)P (nnn−
2r) =

(n1b1x(nnn
−
1 ) + n2b2x(nnn

−
2 ) + n2rb2rx(nnn

−
2r))P (nnn), (25)

where γ2(nbnbnb) = 1 for 1 ≤ nbnbnb ≤ C, otherwise γ2(nbnbnb) = 0
and γ2r(nbnbnb) = 1 for C − b2 + b2r < nbnbnb ≤ T , otherwise
γ2r(nbnbnb) = 0.
Note that the approximations introduced in eq. (25) are

similar to those introduced in the single- threshold model of

[18].

Since x(nnn) = 1, when 0 ≤ nbnbnb ≤ C, it is proved in [18]

that:

a1b1G(j − b1) + a2b2G(j − b2)+

+a2rb2rγ2r(j)G(j − b2r) = jG(j), (26)

for 1 ≤ j ≤ C and γ2r(j) = 1 for C−b2+b2r < j, otherwise
γ2r(j) = 0.

To prove eq. (26), the MA is needed, which assumes that the

population of retry calls of the 2nd service-class is negligible

in states j ≤ C − b2 + b2r.
When C < nbnbnb ≤ T and based on eq. (15), eq. (25) can be

written as:

a1b1P (nnn−
1 ) + a2rb2rγ2r(nbnbnb)P (nnn−

2r) = CP (nnn). (27)

To introduce the link occupancy distribution G(j) in eq.

(27) we sum both sides of eq. (27) over the set of states ΩΩΩj =
{nnn ∈ ΩΩΩ |nbnbnb = j} :

a1b1
∑

{nnn|nbnbnb=j}
P (nnn−

1 ) + a2rb2rγ2r(nbnbnb)
∑

{nnn|nbnbnb=j}
P (nnn−

2r) =

C
∑

{nnn|nbnbnb=j}
P (nnn). (28)

Since by definition
∑

nnn∈ΩΩΩj
P (nnn) = G(j), eq. (28) is written

as:

a1b1G(j − b1) + a2rb2rγ2r(j)G(j − b2r) = CG(j), (29)

where γ2r(j) = 1 for C < j ≤ T .
The combination of eq. (26) and eq. (29) gives the following

approximate recursive formula for the calculation of G(j)’s in
the case of two service-classes when only calls of the 2nd

service-class have “retry parameters”:

G(j) = 1
min(j,C) [a1b1G(j − b1) + a2b2γ2(j)G(j − b2)+

+a2rb2rγ2r(j)G(j − b2r)] (30)

for 1 ≤ j ≤ T , where γ2(j) = 1 for 1 ≤ j ≤ C, otherwise

γ2(j) = 0 and γ2r(j) = 1 for C−b2+b2r < j ≤ T , otherwise
γ2r(j) = 0.
In the case of K service-classes and assuming that all

service-classes may have “retry parameters”, eq. (30) takes

the general form:

G(j)=





1 , for j=0

1
min(j,C)

K∑
k=1

αkbkγk(j)G(j−bk)+

+ 1
min(j,C)

K∑
k=1

αkrbkrγkr(j)G(j−bkr)
, for j=1, . . . , T

0 , otherwise

,

(31)

where γk(j) = 1 for 1 ≤ j ≤ C, otherwise γk(j) = 0 and

γkr(j) = 1 for C − bk + bkr < j ≤ T , otherwise γkr(j) = 0.
The final CBP of a service-class k, Bkr, is the probability

of a call to be blocked with its retry bandwidth requirement:

Bkr =

T∑

j=T−bkr+1

G−1G(j), (32)

where G =
∑T

j=0 G(j) is the normalization constant and

bkr > 0.

B. The extended multi-retry loss model

Similar to the MRM, in the E-MRM a blocked call of

service-class k can have more than one “retry parameters”

(bkrl , µ
−1
krl

) for l = 1, . . ., s(k), where bkrs(k)
< ... <

bkr1 < bk and µ−1
krs(k)

> ... > µ−1
kr1

> µ−1
k . The E-MRM
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Fig. 1. CBP for the 1st service-class.

does not have a PFS and therefore the calculation of the

occupancy distribution, G(j), is based on an approximate

recursive formula whose proof is similar to that of eq. (31):

G(j)=





1 ,for j=0

1
min(j,C)

(
K∑

k=1

akbkγk
(j)G(j−bk)+

+
K∑

k=1

s(k)∑
l=1

akrlbkrlγkrl
(j)G(j−bkrl)

) , for j=1, . . . , T,

0 , otherwise
(33)

where: akrl = λkµ
−1
krl

, γk(j) = 1 for 1 ≤ j ≤ C, otherwise

γk(j) = 0 and γkrl(j) = 1, if j > C − (bkrl−1 − bkrl),
otherwise γkrl(j) = 0.
The final CBP of a service-class k, denoted as Bkrs(k)

, is the

probability of a call to be blocked with its last retry bandwidth

requirement and is given by:

Bkrs(k)
=

T∑

j=T−bkrs(k)
+1

G−1G(j), (34)

where G =
∑T

j=0 G(j) and bkrl > 0 for l = 1, . . ., s(k).

IV. EVALUATION

In this section, we present an application example and

compare the analytical CBP probabilities with those obtained

by simulation. The latter is based on SIMSCRIPT II.5 [20].

Simulation results are mean values of 7 runs with 95%

confidence interval. Since, the resultant reliability ranges of

the measurements are small enough we present only mean

values.

Consider a link of capacity C = 80 b.u. that accommodates

three service-classes of elastic calls which require b1 = 1
b.u., b2 = 2 b.u. and b3 = 6 b.u., respectively. All calls

arrive in the system according to a Poisson process. The

call holding time is exponentially distributed with mean value

µ−1
1 = µ−1

2 = µ−1
3 = 1. The initial values of the offered

traffic-load are: α1 = 20 erl, α2 = 6 erl and α3 = 2 erl.

Fig. 2. CBP for the 2nd service-class.

Fig. 3. CBP for the 3rd service-class (retry calls with b3r2).

Calls of the 3rd service-class may retry two times with reduced

bandwidth requirement: b3r1 = 5 b.u. and b3r2 = 4 b.u. and

increased service time so that α3b3 = a3r1b3r1 = a3r2b3r2 . In
the x-axis of all figures, we assume that α3 remains constant

while α1, α2 increase in steps of 1.0 and 0.5 erl, respectively.

The last value of α1 = 26 erl while that of α2 = 9 erl.

We consider three different values of T : a) T = C = 80
b.u., where no bandwidth compression takes place. In that

case, the proposed E-MRM gives exactly the same CBP results

with the MRM of [18], b) T = 82 b.u. where bandwidth

compression takes place and rmin = C/T = 80/82 and c)

T = 84 b.u. where bandwidth compression takes place and

rmin = C/T = 80/84.

In Fig. 1, we present the analytical and simulation CBP

results of the 1st service-class for all values of T . Similar

results are presented in Fig. 2, for the 2nd service-class and in

Fig. 3 for the 3rd service-class (CBP of calls with b3r2). All
figures presented herein show that: i) the model’s accuracy

is absolutely satisfactory compared to simulation and ii) the

increase of T above C results in a CBP decrease due to the
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existence of the compression mechanism.

V. CONCLUSION

We propose multirate loss models that support elastic traffic

under the assumption that Poisson arriving calls have the

ability, when blocked with their initial bandwidth requirement,

to retry to be connected in the system one (E-SRM) or more

times (E-MRM) with reduced bandwidth and increased service

time requirements. Furthermore, if a retry call is blocked

with its last bandwidth requirement, it can still be accepted

in the system by compressing not only the bandwidth of

all in-service calls (of all service-classes) but also its last

bandwidth requirement. The proposed models do not have

a PFS and therefore we propose approximate but recursive

formulas for the CBP calculation. Simulation results verify the

analytical results. As a future work, we will examine multirate

retry loss models that support both elastic and adaptive traffic

(e.g. adaptive video). Adaptive calls can tolerate bandwidth

compression, but their service time cannot be altered.
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